
Week 8 - Wednesday



 What did we talk about last time?
 Construction techniques
 Bought and customized
 Built systems

 Kinds of programming languages
 Programming style







 Programs often include data, but how should it be organized?
 Data structures store the data in the program, but the data 

also needs to be stored between program runs or sent to 
someone else to use
 Internal data vs. external data

 Common data organization approaches
 Markup languages
 Databases



 Markup languages format text using tags 
so that it's clear what the text means
 XML (Extensible Markup Language) is a 

general purpose language for describing any 
kind of hierarchical data

 HTML (Hypertext Markup Language) 
describes structured documents

 JSON (JavaScript Object Notation) uses a 
key-value pair structure and some people like 
it more than XML because it has less 
overhead

 Many languages have libraries for 
automatically converting data structures 
to and from markup language versions

{
"place": "Boston",
"country": "USA",
"state": "MA",
"date": "31 Oct 2018",
"units": "F",
"high": 61,
"low": 54
}

JSON

<temperatures>
<place>Boston</place>
<country>USA</country>
<state>MA</state>
<date>31 Oct 2018</date>
<units>F</units>
<high>61</high>
<low>54</low>

</temperatures>

XML



 Databases are such a huge topic that we can't meaningfully talk about 
them here
 But many of you are taking COMP 3600 anyway

 Databases have many advantages over flat files (like markup files)
 They can have rules for integrity
 They are often stored on servers, allowing many different programs and users to 

interact with them
 They're designed for efficiently retrieving information
 Good backup techniques exist for databases

 Relational databases use tables to store records (rows) containing a list of 
different values called fields (columns) associated with each record

 Designing databases well is important



 Virtually all systems will be a combination of bought systems and 
built systems

 It's impossible to write a meaningful program without using 
library code
 Java has an excellent standard library, with additional open-source 

libraries for almost anything you might want to do
 Some libraries need to be bought

 Application frameworks are more than just libraries
 They provide a way to structure applications around sets of functionality 

that many applications in a particular domain might need
 Web application framework examples: Ruby on Rails, Angular JS, Django



 We already know the value of a version control system (VCS)
 Some details:
 A VCS stores items (usually files)
 A version is the set of items after one or more modifications
 A revision is a version stored in a VCS
 A baseline is the first revision
 Storage for revisions is called a repository
 Storing a version in the repository is called checking in or committing
 Retrieving a version from the repository is called checking out or 

updating
 A checked-out version of an item is a working copy



 How do we deal with two or more different people working on the 
same file and trying to commit them to the same repository?
 File locking: When a files are checked out for modification, they are 

locked, meaning that no one else can check them out for modification
 Concurrent modification and merge: If someone tries to commit a file 

based on an older version of the file, the commit fails, forcing the person 
to merge the newer repository file with the file they're working on

 Before you start modifying a file, it's wise to pull down the latest 
changes first

 A centralized VCS has one central repository
 A distributed VCS has many repositories that are peers



 Build automation is recompiling, relinking, and retesting systems 
automatically

 This is not tremendously important for programs of the size you 
work on in school

 Large programs, however, can take hours or days to build
 Tools that can automatically build them and test them are critical
 Many systems prevent your code from being pushed into the main 

repository unless it passes all automated tests
 DevOps is a modern buzzword for systems and practices that 

automate the building and testing of software





 Static analysis is looking at code without running it
 Code reviews
 Syntax checking
 Style checking
 Usage checking
 Model checking
 Data flow analysis
 Symbolic evaluation

 Dynamic analysis is running code to test it
 Unit testing
 Debugging
 Performance optimization and tuning

 Both static and dynamic analysis are valuable and have different strengths
 Static analysis doesn't require a fully working program
 Dynamic analysis can give real data about things like performance



 Desk checking is one form of code review
 Looking over the code
 Executing it by hand (actually computing values)

 Formal inspections (discussed earlier) are another
 Formal review guidelines
 Don't read more than 200 lines of code per hour when preparing alone
 Don't cover more than 150 lines of code when doing a team inspection
 Use a checklist

 Examples from a Java inspection checklist
 All variables and constants are named in accord with naming conventions
 There are no variables or attributes with confusingly similar names
 Every variable and attribute has the correct data type
 Every method returns the correct value at every return point
 All methods and attributes have appropriate access modifiers (private, protected, or public)
 No nested if statements should be converted into a switch statement
 All exceptions are handled appropriately



 Syntax checking is now mostly done by editors and IDEs
 Be careful about the errors and warnings IDEs and compilers 

give
 As computers, they can only guess about why the syntax is wrong

 Language-specific style guides are required on most projects
 Automated style checkers also exist
 In addition to formatting, they can check semantic issues like 

variables that are declared and not used
 Some features like this are included in modern compilers as warnings



 For broader semantic issues, usage and idiom checkers (which 
can be combined with a style checker) look for:
 Suspicious or error-prone constructs
 Non-portable constructs
 Memory allocation inconsistencies
 Language-specific issues
▪ Loops that never execute
▪ Loops that never terminate
▪ Using types together that are legal but unusual



 Formal methods use mathematical models to do static analysis
 Model checking uses analysis to determine if a program meets 

requirements, usually if certain preconditions are met, it's 
guaranteed that certain postconditions will be met

 Data flow analysis represents a program as a graph and uses that 
knowledge to calculate the possible values at various points in the 
graph
 Modern languages like Java use data flow analysis to complain, for 

example, that a variable might not have been initialized
 Symbolic evaluation traces through the execution of a program 

with symbolic values instead of concrete values





 Testing is an important form of dynamic analysis
 Unit testing is testing individual units or sub-programs (classes or 

methods in Java) in isolation
 A test case has one value for every input and an expected value 

for every output
 A false negative happens when there's a problem with your code 

but you don't write a test that catches it
 This almost always happens, since it's very hard to test everything

 A false positive happens when your code is fine but your test is 
bad
 For example, you did the math wrong when coming up with your expected 

answer



 Picking good test cases is an art form
 Black box testing is a strategy that assumes no knowledge of 

what happens inside the system
 Only what the input and matching output should be are known
 Black box testing is easily done by someone who had nothing to do with 

developing the code
 Black box testing isn't affected by assumptions about how an algorithm 

should work
 Clear box (or white box or open box) testing uses knowledge of 

the system to generate good tests
 Both kinds of testing are needed to be thorough



 Clear box testing is built around the idea of coverage, which is 
how much of the unit is tested

 Coverage can be explored with a control-flow graph (CFG)
that shows the possible paths execution could take in a 
program
 An action node in a CFG is straight-line code with one entry point 

and one exit point
 A decision node in a CFG is code like an if statement or a loop with 

multiple exit points
 Arrows show the flow of execution through nodes



int calculate(int x, int y)
{

int a, b;
a = 1; // S1
if (x > y) // S2
{

a = 2; // S3
}
x++; // S4
b = y * a; // S5
if (y <= 0) // S6
{

b++; // S7
}
return b; // S8

}

S1

S2

S3

S4

S5

S6

S7

S8

calculate(int x, int y)

[else] [x > y]

[else] [y <= 0]



 We say a statement is exercised by a test or a suite of tests if it gets executed
 Statement coverage is the percentage of statements exercised by a set of 

tests
 Example: (x = 1, y = 2) exercises everything except S3 and S7 in the previous CFG, 

giving a statement coverage of 75%
 Branch coverage is the percentage of branch directions taken by a set of tests
 Example: (x = 1, y = 2) covers the else edge from S2 and the else edge from S6, 

giving a branch coverage of 50%
 Path coverage is the percentage of all execution paths that have been taken
 Example: (x = 1, y = 2) takes only one of the four paths from S1 to S8, giving a path 

coverage of 25%
 More coverage is better
 It will usually take many tests to get good coverage



 Even with relatively high coverage, it's hard to be sure that everything is 
tested

 Complete enumeration is a test suite that contains all possible inputs
 For int values, 232 values for each one

 There are two reasons that complete enumeration is impractical
 You would need to know the correct output for all of those inputs
 Just a few inputs explodes the size of the tests to absurd levels: an input array 

with 10 int values would have (232)10 ≈ 2 × 1096 possible values, more than a 
quadrillion times the number of electrons in the Universe

 One approximation is to create many randomly generated input values 
(and figure out the right answer for each corresponding test case)

 Another approach is to think about which values will be treated the same 
as others, dividing the inputs into equivalence classes



 Boundary value analysis uses values near the edges of legal limits
 If input must be within a range, create tests just below, at, and just above the endpoints 

of the range
 If output must be in a certain range, try to pick inputs that generate values around the 

minimum and maximum of that range
 Example: Boundary values for a method that's supposed to accept passwords if 

they're between 6 and 12 characters inclusive
Input Length Case Valid

"goats" 5 Minimum – 1 False

"wombat" 6 Minimum True

"wombats" 7 Minimum + 1 True

"abracadabra" 11 Maximum – 1 True

"hippopotamus" 12 Maximum True

"administrator" 13 Maximum + 1 False



 A number of other heuristics are commonly used because they often find errors
 For single input parameters
 0 (because people forget about 0 or because of division by 0)
 Very large and very small numbers (because of underflow and overflow)
 Character or string versions of numbers (which makes sense in a language like Python or 

JavaScript but not in Java where type checkers would prevent such things)
 For multiple input parameters
 Equal values for the parameters
 Different relative values (x larger than y, then x smaller than y)

 For arrays and collections
 Very small and very large arrays and collections
 Arrays or collections of length 0 and 1
 Arrays or collections that are unsorted, ascending, and descending
 Arrays or collections with duplicated values and with no duplicated values



 Something's wrong with your program, so you change your code, what 
happens?

 Data suggests that
 30% of software changes result in one of the three bad outcomes
 On average, bad outcomes occur about 10% of the time
 Faults introduced during bug fixes are harder to find and remove than others

 One safeguard is regression testing, running all tests after any software 
change
 Any time you find a bug, add the test you used to find the bug into your test suite

No New Fault Introduced New Fault Introduced

Fault Corrected Good Bad

Fault Not Corrected Bad Very Bad



 Nowadays, running large test suites can be automated
 Tools such as JUnit and other testing tools allow us to:
 Write clearly marked tests with special set-up and clean-up code if 

needed
 Run the tests, sometimes with randomized values or in randomized 

orders
 Record which tests pass and fail
 Show coverage information to see which lines of code the tests 

covered







 JUnit, debugging, optimization, refactoring, and TDD next 
Monday



 Keep reading Chapter 8: Quality Assurance in Construction for 
next Monday

 Work on the final version of Project 2
 Due Monday!
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