
Week 8 - Wednesday



 What did we talk about last time?
 Construction techniques
 Bought and customized
 Built systems

 Kinds of programming languages
 Programming style







 Programs often include data, but how should it be organized?
 Data structures store the data in the program, but the data 

also needs to be stored between program runs or sent to 
someone else to use
 Internal data vs. external data

 Common data organization approaches
 Markup languages
 Databases



 Markup languages format text using tags 
so that it's clear what the text means
 XML (Extensible Markup Language) is a 

general purpose language for describing any 
kind of hierarchical data

 HTML (Hypertext Markup Language) 
describes structured documents

 JSON (JavaScript Object Notation) uses a 
key-value pair structure and some people like 
it more than XML because it has less 
overhead

 Many languages have libraries for 
automatically converting data structures 
to and from markup language versions

{
"place": "Boston",
"country": "USA",
"state": "MA",
"date": "31 Oct 2018",
"units": "F",
"high": 61,
"low": 54
}

JSON

<temperatures>
<place>Boston</place>
<country>USA</country>
<state>MA</state>
<date>31 Oct 2018</date>
<units>F</units>
<high>61</high>
<low>54</low>

</temperatures>

XML



 Databases are such a huge topic that we can't meaningfully talk about 
them here
 But many of you are taking COMP 3600 anyway

 Databases have many advantages over flat files (like markup files)
 They can have rules for integrity
 They are often stored on servers, allowing many different programs and users to 

interact with them
 They're designed for efficiently retrieving information
 Good backup techniques exist for databases

 Relational databases use tables to store records (rows) containing a list of 
different values called fields (columns) associated with each record

 Designing databases well is important



 Virtually all systems will be a combination of bought systems and 
built systems

 It's impossible to write a meaningful program without using 
library code
 Java has an excellent standard library, with additional open-source 

libraries for almost anything you might want to do
 Some libraries need to be bought

 Application frameworks are more than just libraries
 They provide a way to structure applications around sets of functionality 

that many applications in a particular domain might need
 Web application framework examples: Ruby on Rails, Angular JS, Django



 We already know the value of a version control system (VCS)
 Some details:
 A VCS stores items (usually files)
 A version is the set of items after one or more modifications
 A revision is a version stored in a VCS
 A baseline is the first revision
 Storage for revisions is called a repository
 Storing a version in the repository is called checking in or committing
 Retrieving a version from the repository is called checking out or 

updating
 A checked-out version of an item is a working copy



 How do we deal with two or more different people working on the 
same file and trying to commit them to the same repository?
 File locking: When a files are checked out for modification, they are 

locked, meaning that no one else can check them out for modification
 Concurrent modification and merge: If someone tries to commit a file 

based on an older version of the file, the commit fails, forcing the person 
to merge the newer repository file with the file they're working on

 Before you start modifying a file, it's wise to pull down the latest 
changes first

 A centralized VCS has one central repository
 A distributed VCS has many repositories that are peers



 Build automation is recompiling, relinking, and retesting systems 
automatically

 This is not tremendously important for programs of the size you 
work on in school

 Large programs, however, can take hours or days to build
 Tools that can automatically build them and test them are critical
 Many systems prevent your code from being pushed into the main 

repository unless it passes all automated tests
 DevOps is a modern buzzword for systems and practices that 

automate the building and testing of software





 Static analysis is looking at code without running it
 Code reviews
 Syntax checking
 Style checking
 Usage checking
 Model checking
 Data flow analysis
 Symbolic evaluation

 Dynamic analysis is running code to test it
 Unit testing
 Debugging
 Performance optimization and tuning

 Both static and dynamic analysis are valuable and have different strengths
 Static analysis doesn't require a fully working program
 Dynamic analysis can give real data about things like performance



 Desk checking is one form of code review
 Looking over the code
 Executing it by hand (actually computing values)

 Formal inspections (discussed earlier) are another
 Formal review guidelines
 Don't read more than 200 lines of code per hour when preparing alone
 Don't cover more than 150 lines of code when doing a team inspection
 Use a checklist

 Examples from a Java inspection checklist
 All variables and constants are named in accord with naming conventions
 There are no variables or attributes with confusingly similar names
 Every variable and attribute has the correct data type
 Every method returns the correct value at every return point
 All methods and attributes have appropriate access modifiers (private, protected, or public)
 No nested if statements should be converted into a switch statement
 All exceptions are handled appropriately



 Syntax checking is now mostly done by editors and IDEs
 Be careful about the errors and warnings IDEs and compilers 

give
 As computers, they can only guess about why the syntax is wrong

 Language-specific style guides are required on most projects
 Automated style checkers also exist
 In addition to formatting, they can check semantic issues like 

variables that are declared and not used
 Some features like this are included in modern compilers as warnings



 For broader semantic issues, usage and idiom checkers (which 
can be combined with a style checker) look for:
 Suspicious or error-prone constructs
 Non-portable constructs
 Memory allocation inconsistencies
 Language-specific issues
▪ Loops that never execute
▪ Loops that never terminate
▪ Using types together that are legal but unusual



 Formal methods use mathematical models to do static analysis
 Model checking uses analysis to determine if a program meets 

requirements, usually if certain preconditions are met, it's 
guaranteed that certain postconditions will be met

 Data flow analysis represents a program as a graph and uses that 
knowledge to calculate the possible values at various points in the 
graph
 Modern languages like Java use data flow analysis to complain, for 

example, that a variable might not have been initialized
 Symbolic evaluation traces through the execution of a program 

with symbolic values instead of concrete values





 Testing is an important form of dynamic analysis
 Unit testing is testing individual units or sub-programs (classes or 

methods in Java) in isolation
 A test case has one value for every input and an expected value 

for every output
 A false negative happens when there's a problem with your code 

but you don't write a test that catches it
 This almost always happens, since it's very hard to test everything

 A false positive happens when your code is fine but your test is 
bad
 For example, you did the math wrong when coming up with your expected 

answer



 Picking good test cases is an art form
 Black box testing is a strategy that assumes no knowledge of 

what happens inside the system
 Only what the input and matching output should be are known
 Black box testing is easily done by someone who had nothing to do with 

developing the code
 Black box testing isn't affected by assumptions about how an algorithm 

should work
 Clear box (or white box or open box) testing uses knowledge of 

the system to generate good tests
 Both kinds of testing are needed to be thorough



 Clear box testing is built around the idea of coverage, which is 
how much of the unit is tested

 Coverage can be explored with a control-flow graph (CFG)
that shows the possible paths execution could take in a 
program
 An action node in a CFG is straight-line code with one entry point 

and one exit point
 A decision node in a CFG is code like an if statement or a loop with 

multiple exit points
 Arrows show the flow of execution through nodes



int calculate(int x, int y)
{

int a, b;
a = 1; // S1
if (x > y) // S2
{

a = 2; // S3
}
x++; // S4
b = y * a; // S5
if (y <= 0) // S6
{

b++; // S7
}
return b; // S8

}

S1

S2

S3

S4

S5

S6

S7

S8

calculate(int x, int y)

[else] [x > y]

[else] [y <= 0]



 We say a statement is exercised by a test or a suite of tests if it gets executed
 Statement coverage is the percentage of statements exercised by a set of 

tests
 Example: (x = 1, y = 2) exercises everything except S3 and S7 in the previous CFG, 

giving a statement coverage of 75%
 Branch coverage is the percentage of branch directions taken by a set of tests
 Example: (x = 1, y = 2) covers the else edge from S2 and the else edge from S6, 

giving a branch coverage of 50%
 Path coverage is the percentage of all execution paths that have been taken
 Example: (x = 1, y = 2) takes only one of the four paths from S1 to S8, giving a path 

coverage of 25%
 More coverage is better
 It will usually take many tests to get good coverage



 Even with relatively high coverage, it's hard to be sure that everything is 
tested

 Complete enumeration is a test suite that contains all possible inputs
 For int values, 232 values for each one

 There are two reasons that complete enumeration is impractical
 You would need to know the correct output for all of those inputs
 Just a few inputs explodes the size of the tests to absurd levels: an input array 

with 10 int values would have (232)10 ≈ 2 × 1096 possible values, more than a 
quadrillion times the number of electrons in the Universe

 One approximation is to create many randomly generated input values 
(and figure out the right answer for each corresponding test case)

 Another approach is to think about which values will be treated the same 
as others, dividing the inputs into equivalence classes



 Boundary value analysis uses values near the edges of legal limits
 If input must be within a range, create tests just below, at, and just above the endpoints 

of the range
 If output must be in a certain range, try to pick inputs that generate values around the 

minimum and maximum of that range
 Example: Boundary values for a method that's supposed to accept passwords if 

they're between 6 and 12 characters inclusive
Input Length Case Valid

"goats" 5 Minimum – 1 False

"wombat" 6 Minimum True

"wombats" 7 Minimum + 1 True

"abracadabra" 11 Maximum – 1 True

"hippopotamus" 12 Maximum True

"administrator" 13 Maximum + 1 False



 A number of other heuristics are commonly used because they often find errors
 For single input parameters
 0 (because people forget about 0 or because of division by 0)
 Very large and very small numbers (because of underflow and overflow)
 Character or string versions of numbers (which makes sense in a language like Python or 

JavaScript but not in Java where type checkers would prevent such things)
 For multiple input parameters
 Equal values for the parameters
 Different relative values (x larger than y, then x smaller than y)

 For arrays and collections
 Very small and very large arrays and collections
 Arrays or collections of length 0 and 1
 Arrays or collections that are unsorted, ascending, and descending
 Arrays or collections with duplicated values and with no duplicated values



 Something's wrong with your program, so you change your code, what 
happens?

 Data suggests that
 30% of software changes result in one of the three bad outcomes
 On average, bad outcomes occur about 10% of the time
 Faults introduced during bug fixes are harder to find and remove than others

 One safeguard is regression testing, running all tests after any software 
change
 Any time you find a bug, add the test you used to find the bug into your test suite

No New Fault Introduced New Fault Introduced

Fault Corrected Good Bad

Fault Not Corrected Bad Very Bad



 Nowadays, running large test suites can be automated
 Tools such as JUnit and other testing tools allow us to:
 Write clearly marked tests with special set-up and clean-up code if 

needed
 Run the tests, sometimes with randomized values or in randomized 

orders
 Record which tests pass and fail
 Show coverage information to see which lines of code the tests 

covered







 JUnit, debugging, optimization, refactoring, and TDD next 
Monday



 Keep reading Chapter 8: Quality Assurance in Construction for 
next Monday

 Work on the final version of Project 2
 Due Monday!


	COMP 3100
	Last time
	Questions?
	More on Construction Techniques
	Data organization
	Markup languages
	Databases
	Hybrid systems
	Version control
	VCS choices
	Build automation
	Quality Assurance in Construction
	Static analysis and dynamic analysis
	Code reviews
	Syntax and style checking
	Usage checking and idiom checking
	Formal methods
	Unit Testing
	Unit testing
	Developing test cases
	Code coverage
	Example CFG
	Kinds of coverage
	Complete enumeration
	Boundary value analysis
	Other heuristics
	Regression testing
	Unit testing tools
	Quiz
	Upcoming
	Next time…
	Reminders

