
Week 8 - Wednesday



 What did we talk about last time?
 Construction techniques
 Bought and customized
 Built systems

 Kinds of programming languages
 Programming style







 Programs often include data, but how should it be organized?
 Data structures store the data in the program, but the data 

also needs to be stored between program runs or sent to 
someone else to use
 Internal data vs. external data

 Common data organization approaches
 Markup languages
 Databases



 Markup languages format text using tags 
so that it's clear what the text means
 XML (Extensible Markup Language) is a 

general purpose language for describing any 
kind of hierarchical data

 HTML (Hypertext Markup Language) 
describes structured documents

 JSON (JavaScript Object Notation) uses a 
key-value pair structure and some people like 
it more than XML because it has less 
overhead

 Many languages have libraries for 
automatically converting data structures 
to and from markup language versions

{
"place": "Boston",
"country": "USA",
"state": "MA",
"date": "31 Oct 2018",
"units": "F",
"high": 61,
"low": 54
}

JSON

<temperatures>
<place>Boston</place>
<country>USA</country>
<state>MA</state>
<date>31 Oct 2018</date>
<units>F</units>
<high>61</high>
<low>54</low>

</temperatures>

XML



 Databases are such a huge topic that we can't meaningfully talk about 
them here
 But many of you are taking COMP 3600 anyway

 Databases have many advantages over flat files (like markup files)
 They can have rules for integrity
 They are often stored on servers, allowing many different programs and users to 

interact with them
 They're designed for efficiently retrieving information
 Good backup techniques exist for databases

 Relational databases use tables to store records (rows) containing a list of 
different values called fields (columns) associated with each record

 Designing databases well is important



 Virtually all systems will be a combination of bought systems and 
built systems

 It's impossible to write a meaningful program without using 
library code
 Java has an excellent standard library, with additional open-source 

libraries for almost anything you might want to do
 Some libraries need to be bought

 Application frameworks are more than just libraries
 They provide a way to structure applications around sets of functionality 

that many applications in a particular domain might need
 Web application framework examples: Ruby on Rails, Angular JS, Django



 We already know the value of a version control system (VCS)
 Some details:
 A VCS stores items (usually files)
 A version is the set of items after one or more modifications
 A revision is a version stored in a VCS
 A baseline is the first revision
 Storage for revisions is called a repository
 Storing a version in the repository is called checking in or committing
 Retrieving a version from the repository is called checking out or 

updating
 A checked-out version of an item is a working copy



 How do we deal with two or more different people working on the 
same file and trying to commit them to the same repository?
 File locking: When a files are checked out for modification, they are 

locked, meaning that no one else can check them out for modification
 Concurrent modification and merge: If someone tries to commit a file 

based on an older version of the file, the commit fails, forcing the person 
to merge the newer repository file with the file they're working on

 Before you start modifying a file, it's wise to pull down the latest 
changes first

 A centralized VCS has one central repository
 A distributed VCS has many repositories that are peers



 Build automation is recompiling, relinking, and retesting systems 
automatically

 This is not tremendously important for programs of the size you 
work on in school

 Large programs, however, can take hours or days to build
 Tools that can automatically build them and test them are critical
 Many systems prevent your code from being pushed into the main 

repository unless it passes all automated tests
 DevOps is a modern buzzword for systems and practices that 

automate the building and testing of software





 Static analysis is looking at code without running it
 Code reviews
 Syntax checking
 Style checking
 Usage checking
 Model checking
 Data flow analysis
 Symbolic evaluation

 Dynamic analysis is running code to test it
 Unit testing
 Debugging
 Performance optimization and tuning

 Both static and dynamic analysis are valuable and have different strengths
 Static analysis doesn't require a fully working program
 Dynamic analysis can give real data about things like performance



 Desk checking is one form of code review
 Looking over the code
 Executing it by hand (actually computing values)

 Formal inspections (discussed earlier) are another
 Formal review guidelines
 Don't read more than 200 lines of code per hour when preparing alone
 Don't cover more than 150 lines of code when doing a team inspection
 Use a checklist

 Examples from a Java inspection checklist
 All variables and constants are named in accord with naming conventions
 There are no variables or attributes with confusingly similar names
 Every variable and attribute has the correct data type
 Every method returns the correct value at every return point
 All methods and attributes have appropriate access modifiers (private, protected, or public)
 No nested if statements should be converted into a switch statement
 All exceptions are handled appropriately



 Syntax checking is now mostly done by editors and IDEs
 Be careful about the errors and warnings IDEs and compilers 

give
 As computers, they can only guess about why the syntax is wrong

 Language-specific style guides are required on most projects
 Automated style checkers also exist
 In addition to formatting, they can check semantic issues like 

variables that are declared and not used
 Some features like this are included in modern compilers as warnings



 For broader semantic issues, usage and idiom checkers (which 
can be combined with a style checker) look for:
 Suspicious or error-prone constructs
 Non-portable constructs
 Memory allocation inconsistencies
 Language-specific issues
▪ Loops that never execute
▪ Loops that never terminate
▪ Using types together that are legal but unusual



 Formal methods use mathematical models to do static analysis
 Model checking uses analysis to determine if a program meets 

requirements, usually if certain preconditions are met, it's 
guaranteed that certain postconditions will be met

 Data flow analysis represents a program as a graph and uses that 
knowledge to calculate the possible values at various points in the 
graph
 Modern languages like Java use data flow analysis to complain, for 

example, that a variable might not have been initialized
 Symbolic evaluation traces through the execution of a program 

with symbolic values instead of concrete values





 Testing is an important form of dynamic analysis
 Unit testing is testing individual units or sub-programs (classes or 

methods in Java) in isolation
 A test case has one value for every input and an expected value 

for every output
 A false negative happens when there's a problem with your code 

but you don't write a test that catches it
 This almost always happens, since it's very hard to test everything

 A false positive happens when your code is fine but your test is 
bad
 For example, you did the math wrong when coming up with your expected 

answer



 Picking good test cases is an art form
 Black box testing is a strategy that assumes no knowledge of 

what happens inside the system
 Only what the input and matching output should be are known
 Black box testing is easily done by someone who had nothing to do with 

developing the code
 Black box testing isn't affected by assumptions about how an algorithm 

should work
 Clear box (or white box or open box) testing uses knowledge of 

the system to generate good tests
 Both kinds of testing are needed to be thorough



 Clear box testing is built around the idea of coverage, which is 
how much of the unit is tested

 Coverage can be explored with a control-flow graph (CFG)
that shows the possible paths execution could take in a 
program
 An action node in a CFG is straight-line code with one entry point 

and one exit point
 A decision node in a CFG is code like an if statement or a loop with 

multiple exit points
 Arrows show the flow of execution through nodes



int calculate(int x, int y)
{

int a, b;
a = 1; // S1
if (x > y) // S2
{

a = 2; // S3
}
x++; // S4
b = y * a; // S5
if (y <= 0) // S6
{

b++; // S7
}
return b; // S8

}

S1

S2

S3

S4

S5

S6

S7

S8

calculate(int x, int y)

[else] [x > y]

[else] [y <= 0]



 We say a statement is exercised by a test or a suite of tests if it gets executed
 Statement coverage is the percentage of statements exercised by a set of 

tests
 Example: (x = 1, y = 2) exercises everything except S3 and S7 in the previous CFG, 

giving a statement coverage of 75%
 Branch coverage is the percentage of branch directions taken by a set of tests
 Example: (x = 1, y = 2) covers the else edge from S2 and the else edge from S6, 

giving a branch coverage of 50%
 Path coverage is the percentage of all execution paths that have been taken
 Example: (x = 1, y = 2) takes only one of the four paths from S1 to S8, giving a path 

coverage of 25%
 More coverage is better
 It will usually take many tests to get good coverage



 Even with relatively high coverage, it's hard to be sure that everything is 
tested

 Complete enumeration is a test suite that contains all possible inputs
 For int values, 232 values for each one

 There are two reasons that complete enumeration is impractical
 You would need to know the correct output for all of those inputs
 Just a few inputs explodes the size of the tests to absurd levels: an input array 

with 10 int values would have (232)10 ≈ 2 × 1096 possible values, more than a 
quadrillion times the number of electrons in the Universe

 One approximation is to create many randomly generated input values 
(and figure out the right answer for each corresponding test case)

 Another approach is to think about which values will be treated the same 
as others, dividing the inputs into equivalence classes



 Boundary value analysis uses values near the edges of legal limits
 If input must be within a range, create tests just below, at, and just above the endpoints 

of the range
 If output must be in a certain range, try to pick inputs that generate values around the 

minimum and maximum of that range
 Example: Boundary values for a method that's supposed to accept passwords if 

they're between 6 and 12 characters inclusive
Input Length Case Valid

"goats" 5 Minimum – 1 False

"wombat" 6 Minimum True

"wombats" 7 Minimum + 1 True

"abracadabra" 11 Maximum – 1 True

"hippopotamus" 12 Maximum True

"administrator" 13 Maximum + 1 False



 A number of other heuristics are commonly used because they often find errors
 For single input parameters
 0 (because people forget about 0 or because of division by 0)
 Very large and very small numbers (because of underflow and overflow)
 Character or string versions of numbers (which makes sense in a language like Python or 

JavaScript but not in Java where type checkers would prevent such things)
 For multiple input parameters
 Equal values for the parameters
 Different relative values (x larger than y, then x smaller than y)

 For arrays and collections
 Very small and very large arrays and collections
 Arrays or collections of length 0 and 1
 Arrays or collections that are unsorted, ascending, and descending
 Arrays or collections with duplicated values and with no duplicated values



 Something's wrong with your program, so you change your code, what 
happens?

 Data suggests that
 30% of software changes result in one of the three bad outcomes
 On average, bad outcomes occur about 10% of the time
 Faults introduced during bug fixes are harder to find and remove than others

 One safeguard is regression testing, running all tests after any software 
change
 Any time you find a bug, add the test you used to find the bug into your test suite

No New Fault Introduced New Fault Introduced

Fault Corrected Good Bad

Fault Not Corrected Bad Very Bad



 Nowadays, running large test suites can be automated
 Tools such as JUnit and other testing tools allow us to:
 Write clearly marked tests with special set-up and clean-up code if 

needed
 Run the tests, sometimes with randomized values or in randomized 

orders
 Record which tests pass and fail
 Show coverage information to see which lines of code the tests 

covered







 JUnit, debugging, optimization, refactoring, and TDD next 
Monday



 Keep reading Chapter 8: Quality Assurance in Construction for 
next Monday

 Work on the final version of Project 2
 Due Monday!


	COMP 3100
	Last time
	Questions?
	More on Construction Techniques
	Data organization
	Markup languages
	Databases
	Hybrid systems
	Version control
	VCS choices
	Build automation
	Quality Assurance in Construction
	Static analysis and dynamic analysis
	Code reviews
	Syntax and style checking
	Usage checking and idiom checking
	Formal methods
	Unit Testing
	Unit testing
	Developing test cases
	Code coverage
	Example CFG
	Kinds of coverage
	Complete enumeration
	Boundary value analysis
	Other heuristics
	Regression testing
	Unit testing tools
	Quiz
	Upcoming
	Next time…
	Reminders

